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Introduction  

The most popular sports competition in the United States is, and has been for several decades, the NFL. 

The championship sees 32 teams from around the country compete against each other in two stages. The 

first, the “regular season”, consists of each team playing 17 games (as of 2021i) over 18 weeks. After this, 

the teams’ win-loss ratios are compared within 8 divisions: National Football Conference (NFC) North, 

South, East and West, and American Football Conference (AFC) North, South, East and West. The top 

team from each division, as well as the top three remaining teams from each conference, then enter the 

“playoffs”, which are a series of 13 elimination-bracket games over four rounds. The last of these 13 games 

is the Super Bowl, which is played on the second Sunday of every February.

Figure 1.1: 2024 NFL playoffs bracket.ii
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This investigation aims to model both the regular season and the postseason of the NFL and find the 

easiest way for my home team, the New Orleans Saints, to win the Super Bowl. The Saints are by no 

means the best team in the NFL, and they have only made it to the playoffs in 10 of the last 30 seasonsiii. 

Despite only having won 47% of their lifetime regular season games and 44% of their playoff games as of 

2024, as compared to the 55% and 63% of one of the most notable teams, the New England Patriotsiv, I 

believe that the Saints still have a decent chance of winning the Super Bowl. To test this, I will interpret 

game data from the last 7 years, and season record data from the last 25 years, to construct a model of the 

2025 NFL season and find the easiest way for the Saints to win their second Super Bowl.

Data collection

The first steps for my investigation were to collect data for each team in previous years. I began by 

collecting data of each team’s games played since 2018, recording the outcome and score difference. As I 

needed to record a total of around 3000 game results, efficiency was critical at this step in order to avoid 

spending too much time recording these games. As well as this, it was important to avoid making errors 

when recording games, as it would be hard to tell which of the 3000 games were incorrect if I did make 

errors. To combat these issues, I used tables which were available on Wikipedia, as they laid the 

information out much more densely than the NFL website, saving time, and were arranged by team, 

instead of by each week of the season. While Wikipedia can be an imperfect source, every game result on 

each page had a link to the game’s analysis on the NFL website, which had the same game result. I checked 

the Wikipedia data against the NFL data at certain points, though not for every game, and every time I 

checked, the data was the same. For these reasons, I thought that the benefits of using the data from 

Wikipedia outweighed the potential concerns.
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Figure 2.1 and 2.2: The layout of game data on the NFL websitev versus Wikipediavi. 

As all the games played by the team are displayed on each page, I had to avoid double-counting games, 

which would have happened if I had recorded every game on every page. The fastest way I found to do this 

was to only record the home games on each page: the games which did not say “at [other team]” in each 

line. In this way, I was able to efficiently ensure that my data had the correct number of games. For each 

game, I recorded the home team, the away team, the winner and the point difference. I did not end up 

using the point difference in my models, but I included it as I was unsure at this point what the model 

would entail.
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Figure 2.3: A sample section of the first data table for the New Orleans Saints.

In order to have more data for modelling purposes, I also found a more general spreadsheet online which 

had data for each team’s seasons since the start of the 1999 season. This data included many fields which I 

did not use, but the ones I focused on were wins, losses and ties over each season. 

Figure 2.4: A section of the second data table which I used.vii
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I then rearranged the data sheet and supplanted it with the records of each team for the 2023 and 2024 

seasons, as this sheet only had data up to the 2022 season. Using this data, I would form correlational plots 

of each team’s wins and losses, in order to estimate their wins and losses in the next season. 

Data analysis: Regular season

The first piece of analysis which I did was to form regression models of each team’s data as a function of 

games won over time. Immediately on looking at the data of “year versus wins”, it was clear that linear 

regression curves would not be appropriate for the data, as many teams’ data follow a curved trend.

Figure 3.1 and 3.2: Two of the teams for which a linear correlation would be least appropriate.

As well as this, the NFL season changed from 16 to 17 games in 2021, so the last four years of data have, 

on average, higher values than those before on account of playing one more game per season. As a result, 

many teams’ regression curves resulted in higher values for the 2025 season than would be accurate when I 
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plotted the number of games won each year. In order to fix this issue, I instead graphed the percentage of 

games won each year. I then multiplied the predicted percentage of games won in the 2025 season by 17 to 

get back to a numerical result of how many games the team would win. I also set the x-axis as “years since 

1999” so that the data points would start at x=0, instead of x=1999, which will make the graph 

calculations easier later on.

In order to find the relevant regression curves, I used a Levenberg-Marquardt algorithm (LMA), 

otherwise known as the damped least-squares (DLS) method. This model provides a solution for non-

linear least-squares regression, which is exactly what I need. The least-squares approach to regression is an 

estimation of a line or curve which aims to find the lowest sum of the squares of the difference between 

each data value and the approximation curve, as displayed below.

Figure 3.3: A visual representation of a least-squares model for a curve of degree 3.

 Least-squares methods find this approximation by estimating solutions to the equation

β̂=argminβ S (β)=argminβ∑
i=1

m

[ y i−f (xi ; β)]
2 viii. β̂ represents the estimated values of parameters

β , which define the function f (x ; β)=β0+β1 x+β2 x
2+...+βn⋅x

n , which result in the smallest 

(argmin) sum of squares between m number of data points (xi , y i) and the curve f(x). Iterative least-

07



squares algorithms, of which the LMA is one, aim to find these β values by calculating a change to these 

variables, Δ β , to minimize the sum of squares. After each calculation, the new parameters are calculated 

as βnew← βold+Δ β and the function and sum of squares are calculated again, providing different 

numbers through which a different set of Δ β values are found. The process continues until the sum of 

squares is reduced by an amount that crosses a certain threshold, which is typically user-specified. For 

these calculations, I will set this threshold as Δ S (β)≤−1 . The LMA is a combination of the Gauss-

Newton least-squares algorithm (GNA) and the gradient-descent algorithm (GDA).  The Gauss-Newton 

algorithm is itself based on another algorithm, the original Newton algorithm, which found the 

parametric change using the equation J (x)+H (x)Δ β=0 ix. Here J(x) is the Jacobian matrix: a matrix 

which describes all partial derivatives of the given function, J (x)=[ ∂ f (xi)∂ β i ] , and H(x) is the Hessian 

matrix, which is a matrix of each second partial derivative of the same function, H (x)=[ ∂2 f (x)
∂ xi∂ x j ] . As 

calculating every second derivative is quite slow, the Gauss-Newton approach replaces the Hessian matrix 

with an approximation. This approximation results in the “normal equation”, 

J (x)+JT (x)J (x)Δ β=0 . JT (x) here denotes the transpose of the Jacobian matrix, where the 

columns and rows of a matrix are switched: for instance, if M (x)=[a b c
d e f ] , M T (x)=[a d

b e
c f ] . By 

approximating the Hessian matrix, the Gauss-Newton algorithm avoids calculating second derivatives, 

making it easier and faster to carry out. The GDA, by comparison, finds minima by finding a point on a 

curve, calculating the derivative of the equation at that point to find the gradient, subtracting the gradient 

from the x-value of the point, then finding the gradient at the new point, repeating until the gradient 

reaches 0x. Gradient-descent methods are more useful when the initial parameter guess is close to the 
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correct values, as it takes more iterations with further guesses. In this case, the function which is being 

minimized is the sum of squares, and this method would use the change in this sum to calculate the 

“gradient” of the parameter change.

In combining these two functions, the Levenberg-Marquardt algorithm uses the formula 

(JT J+ λ diag(JT J ))Δ β=JT r xi. Here, the formula is multiplying the parametric change, Δ β , by the 

symmetric Jacobian matrix JT J as well as by a dampening variable λ multiplied by the diagonal values 

of the symmetric Jacobian matrix. This variable typically starts at a moderate number like 1, and is either 

multiplied by 10 if the model gets less accurate (i.e. if S (β) increases between iterations) or divided by 10 

if the model gets more accuratexii. When λ is large, the algorithm is closer to a gradient-descent method 

in updating the parameters of β , and when λ is small, the algorithm is more like a Gauss-Newton 

update. This equates to the transpose of the Jacobian matrix, multiplied by the column vector of the 

residuals r between the given y value and the y value supplied by the equation, found as

r i(β)= y i−f (xi ; β) . As this is an iterative method, it follows the same broad steps as the Gauss-

Newton and gradient-descent approaches between iterations. The primary difference between the 

Levenberg-Marquardt and Gauss-Newton algorithms is the presence of the dampening variable λ in 

the Levenberg-Marquardt method.  By regulating between the Gauss-Newton and gradient-descent 

methods, the dampening variable increases the reliability of the LMA as it is suitable for parametric 

guesses which are both close and far from the true values.

Using the data of the New Orleans Saints as an example, I can use the Levenberg-Marquardt algorithm to 

optimize the equation f (x ; β) to create a regression curve for the data, taking the number of years since 

1999 as the x-variable, and the percentage of games won in that year as the y-variable. The first step is to 

define the parameters and the chosen equation: setting β=(a ,b , c) gives us the required parameters for 
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a regression curve in x2, defined as the parametric equation f (x ;a ,b , c)=ax2+bx+c . For this first 

calculation, I estimated the regression curve as f (x)=−0.1(x−15)2+60 or

f (x)=−0.1 x2+3 x+37.5 using an estimated turning point and completing the square.

Figure 3.4: A plot of the Saints’ season results along with my initial function guess, displayed in red.

 This resulted in the initial parameters a=−0.1 , b=3 and c=37.5 . The next step in this equation is 

to calculate the residuals r for each value of x from 0 to 25, and finding the sum of their squares,

S=∑
i=0

25

(r i
2) . From this equation, the residuals and their sums can be calculated as shown in the below 

table:

Figure 3.5: A table of each y-value, f(x)-value and residual value for each x-value from 0 to 25.
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From the r2 data in this table, the sum of the squares can be found as S (β)1=6682.8 .While this is not 

needed to calculate the next iteration of the algorithm, finding the S value allows the success of the 

algorithm to be assessed, and this means that the λ variable can be adjusted accordingly in following 

iterations. We can also then form the column vector of residuals with respect to the given parameters, 

equated as r (β)=[−18.7522.1
⋮

−20.59] , which will be used later in the equation. To find the Jacobian matrix, 

f (xi ;a ,b , c) must be partially derived for each value of x with respect to each of a, b and c, to form a 

26x3 matrix, J=[ ∂ f (x1)
∂a

∂ f (x1)
∂b

∂ f (x1)
∂ c

⋮ ⋮ ⋮
∂ f (x26)

∂a
∂ f (x26)

∂b
∂ f (x26)

∂ c
] , where the derivative functions can be simplified to 

create the matrix J=[ x1
2 x1 1

⋮ ⋮ ⋮
x26
2 x26 1] and the transpose JT=[ x1

2 ⋯ x26
2

x1 ⋯ x26
1 ⋯ 1 ] . Using matrix 

multiplication, a 3x3 matrix can be formed as JT J=[∑x=0
25

x4 ∑
x=0

25

x3 ∑
x=0

25

x2

∑
x=0

25

x3 ∑
x=0

25

x2 ∑
x=0

25

x

∑
x=0

25

x2 ∑
x=0

25

x ∑
x=0

25

x0] . Using the formulae for 

each of these sums, ∑
x=0

n

x=1
2
n2+ 1

2
n , ∑

x=0

n

x2=1
3
n3+ 1

2
n2+ 1

6
n , ∑

x=0

n

x3= 1
4
n4+ 1

2
n3+ 1

4
n2 and

∑
x=0

n

x4=1
5
n5+ 1

2
n4+ 1

3
n3− 1

30
n xiii  nets the matrix JT J=[2153645 105625 5525

105625 5525 325
5525 325 26 ] .The diagonal 

matrix can also be found as diag(JT J )=[2153645 0 0
0 5525 0
0 0 26 ] . Using these matrices, and using an 
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initial dampening variable value of λ=1.0 , the first side of the iterative equation can be equated to

(JT J+diag(JT J ))Δ β=[4307290 105625 5525
105625 11050 325
5525 325 52 ][ΔaΔbΔ c ]  . This then simplifies to a column vector 

in three variables, [4307290Δa+105625Δb+5525Δ c105625Δa+11050Δb+325Δ c
5525Δa+325Δb+52Δ c ] . To find the other half of the equation, we 

multiply r (β)  by JT to get the column vector JT r (β)=[846.37192.63
16.47 ] . Because two 3x1 column vectors 

have been formed, a set of simultaneous equations can be formed:

4307290Δa+105625Δb+5525Δ c=846.37 , 105625Δa+11050Δb+325Δ c=192.63 and

5525Δa+325Δb+52Δ c=16.47 . Solving this system of equations results in the Δ β values of 

Δa=−5.097×10−4 , Δb=0.013963 and Δ c=0.28362 to four significant figures. We can then add 

these values back to each of a, b and c to find the new equation f (x)−0.10051 x2+3.0139b+37.784 , 

which results in a sum of squares value of S (β)2=6672.2 . By comparing this to the first value, we can 

see that the first iteration was successful, so we can set λ=0.1 for the next iteration. After the fifth 

iteration, decreasing λ by a factor of 10 after each successful iteration, the sum of squares S decreased by 

less than 1 as the algorithm converged to the function f (x)=−0.13543 x2+3.87678 x+34.703 . 
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Figure 3.6: A comparison between my initial guess (in red) and the final equation (in blue) against the data points of 

the Saints.

By using this function and setting x=26 , the theoretical percentage of games won in the 2025 season 

by the Saints can be estimated as 43.95%, or 7.47 games. 

One limitation of the LMA is that it can only calculate local minima, rather than the global minimum, for 

any guessed parameter values. If there are multiple minima, the algorithm can only approximate these 

points if the initial guess is close to the final solution. This is due to the characteristic of the gradient-

descent update algorithm: once a minimum point is found, the algorithm stops, therefore to find the 

global minimum, initial guesses must be provided which are closer to the global minimum than a local 

minimum, as opposed to a stock guess. Because my algorithm model is quite simple, only involving 3-4 

parameters, it is unlikely that this will present a considerable issue.

For the rest of the algorithm calculations, I used a graphing software instead of manually calculating the 

correlations. For these, instead of manually guessing each team’s parameters to start, I used stock guesses 

of 1 for each value, as this was the default in the graphing program. After collating all of the data and 

calculating correlation curves, I formed a table of results, arranged by division and conference. One point 

to note is that the Houston Texans were established in 2002, therefore their model is using 23, rather than 
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26, data points. Although I could have discarded all teams’ data values prior to 2002, I thought it was a 

better trade-off to have slightly less consistent data for the Texans, rather than sacrificing a significant 

portion of all teams’ data. For each team, I found the correlation curve in both x2 and x3 and used the data 

of the curve which fit the data better. My intention in doing this is to increase the reliability of the model 

which is being used to find the trend in the teams’ performance. By using multiple correlation curves for 

each team, I can assess correlation coefficients for each and use the curve which is more appropriate for 

each team. 

To calculate the fit, I used Kendall’s rank correlation coefficient (KRCC) for non-linear correlation 

models. The KRCC is found by taking a set of n objects, S={a ,b ,c ... , x , y} which, for an example 

sample set of 4 objects S={a ,b ,c ,d } is then transformed into any ordered set O, for instance 

OX=[a ,d ,b ,c ] . This ordered set can then be arranged into a set of ordered pairs, 

PX={[a ,d ] ,[a ,b ] ,[a ,c ] ,[d ,b ] ,[d ,c ] ,[b ,c ]} and then compared to a different set of ordered 

pairs, for instance PY={[a ,d ] ,[a ,c ] ,[a ,b ] ,[d ,c ] ,[d ,b ] ,[c ,b ]} based on a different ordered set 

OY=[a ,d , c ,b ] . By taking the symmetric difference distance dΔ as the total number of discordant 

pairs: the number of pairs which are in one set but not the other, which would take a value of 2 for the 

above example due to the two different pairs [c,b] and [b,c], an absolute numerical value of the difference 

between the sets can be found. When calculating the symmetric difference distance, the order of the pairs 

within the set does not matter, only the order of the values within each pair. Following this, the symmetric 

difference dΔ  is normalized as τ a  to take values between -1 and +1, where -1 is the largest possible 

difference, found in a perfect negative correlation and +1 is the smallest possible difference, found in a 

perfect positive correlation. This results in the formula τ a=
N−dΔ(Px , P y)

N
xiv where N
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represents the number of ordered-pair elements in each set Pi , calculated as n(n−1)
2

. This formula 

can then be simplified to τ a=1−
dΔ
N

. Due to the nature of the data being used here, however, there is 

a guarantee that some values of games won will be tied, as there are only 16 possible y-values that can be 

taken for each of the 22 x-values from x=0 to x=21, so the tie-corrected coefficient, τ b , must be 

calculated. To find this value, N is first equated as N=C+D+T X+T Y , where C is equal to the number 

of concordant (matching) pairs in each set Pi , D is equal to the number of discordant pairs in each set, 

or 
dΔ
2

, T X represents the number of tied pairs – pairs of two tied values – in list PX , and T Y

represents the number of tied pairs in list PY . The correlation coefficient is then re-calculated as 

τ b=
C−D

√(C+D+T X)(C+D+T Y )
xv, or τ b=

C−D
√(N−T X)(N−T Y )

. By removing the tied pairs in the 

denominator, this second formula effectively readjusts the Kendall correlation coefficient for the number 

of non-tied pairs without having to change the dataset, making it more appropriate for this case.

 As an example, taking the Saints’ data and setting a← x=0 , b← x=1. .. z← x=25  to create the sample 

set S={a ,b , c , ... , z} , the data points of both the actual data and the values given by the regression 

function can be arranged in ascending order to create the ordered sets 

PA={a , g , z , x , c , i , n , p ,q , r , e , f , j ,w , y ,d ,b ,h , l , o , s , v , k ,m , t ,u} for the actual values and 

PT={a ,b , c ,d , z , e , y , f , x , g ,w ,h , v , i ,u , j , t , k , s , l , r ,m ,q ,n , p ,o} for the theoretical values. 

These two sets then created the ordered pair sets OA={(a , g) ,(a , z) , ... ,(m,u) ,(t ,u)} and 

OT={(a ,b) ,(a ,c) , ... ,(n ,o) ,( p ,o)} . Using the formula for τ b  and plugging in the appropriate 

values for OA and OT , the correlation coefficient can be calculated as τ b=
179−116

√(325−30)⋅(325−0)
, 
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with a final result of τ b=0.2035 . As this is not a particularly strong correlation, it is likely that the cubic 

correlation curve will be better for this team. This weak trend is likely to be due to the fact that the Saints’ 

data seems to fluctuate quite a lot from year to year, even if the midpoint of these fluctuations does appear 

to follow a correlation curve.

 Calculating the KRCC for each correlation curve of each team, I formed this table of values, highlighting 

for each team which curve was a better fit.

Figure 3.7: A table of τb values for cubic (top) and quadratic (bottom) correlation curves.

Using these τ values to determine which curve to use as the final model, I formed another table, showing 

each team’s predicted number of wins with the preferred correlation curve, by calculating each function 
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at x=26. In the case that both correlation constants were the same between curves, I took the average 

values of the result of the cubic and quadratic regression curve.

Figure 3.8: The modelled table of how many games each team is projected to win.

Due to the Saints not making it to the playoffs in this initial, the next step will be to calculate the chance 

that they make it through to the playoffs. There are two ways for this to happen: finishing top of the 

division, or getting a “wild card” position: finishing in the top 3 of the conference (NFC) when these four 

division winners are excluded. In order to finish top of the division, the Saints would have to win a total of 

13 games. By comparison, to beat one of the three next-best teams in the division, the Saints would only 

have to beat the Cowboys, with 9 games. In order to calculate the most likely 6 teams which the Saints 

would have already beaten, and the next most likely 4 for the Saints to beat to make it to the playoffs, I 

used a second spreadsheet of data, which recorded individual games between teams from 2018 to 2024. 

Using this in conjunction with the games which have been announced for the 2025 seasonxvi, I formed this 

chart to see the teams which the Saints have had the best track record with.
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Figure 3.9: A chart of the percentage of games which the Saints have won since 2018 against each of the teams they will 

play in 2025.

Using this graph, it can be predicted that the 6 games which the Saints are predicted by the previous 

model to win are most likely to be won against the Falcons, the Patriots, the Jets, the Giants, the Seahawks 

and the Bears. Taking these six wins as guaranteed, I then calculated the probability of each way for the 

Saints to get to the playoffs, winning four or more games, using a tree diagram. I did not include the Bills 

or Dolphins in this diagram due to the Saint’s 0% win rate against them in the past 6 years. In the name of 

simplicity, I also left out the 49ers and Buccaneers. This is because they are top of their division, meaning 

they already have a spot in the playoffs. The NFL playoff seeds for each division are assigned so that seeds 1 

through 4 are the four division leaders in order of the number of games won, and seeds 5 through 7 are 

the teams with the first, second and third most wins excluding the four division leaders. If the number of 

games that the division leaders win changes, the seeding for the playoffs would change and this would lead 

to a high number of possible outcomes, which would not be feasible to visualize and calculate in their 

entirety. This left six potential games against 5 teams (the Saints play each of the Panthers, Buccaneers and 

Falcons twice), of which the Saints had to win four, as illustrated below:
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Figure 3.10: A tree diagram of each potential combination of 4 or more wins from the 6 games.

This diagram represents all winning outcomes for the Saints to get to the playoffs. Though not displayed 

on the diagram due to space constraints, the probabilities for each win are as follows, with the probability 

of the loss being X L=1−XW : 

CPW=0.643 , AFW=0.714 , LARW=0.400 ,TTW=0.667 , ACW=0.500 . Outcomes of four or more 

wins are displayed in green, outcomes of five or more wins in yellow and outcomes of six wins in blue. 

Any combination of three losses is displayed in red, as the Saints can only lose a maximum of two games in 

this scenario. This creates three distinct seeding combinations: one where the Saints have 10 wins, 

reaching #7 seed, one where they have 11 wins, reaching #6 seed, and one where they have 12 wins, 

reaching #5 seed. The probability of each of these outcomes will be denoted as P(S7) , P(S 6) and

P(S5) . Assuming that the probabilities of each game are independent of each other, the three 

outcomes can be found by multiplying along each path of the tree diagram adding the results together for 
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each outcome, for instance, calculating the probability of the top path gives us the equation 

P(S5)=CPW⋅CPW⋅AFW⋅LARW⋅TTW⋅ACW to get the result of 0.0394, or 3.94%. Carrying out the 

same calculations for the other two outcomes gives the results P(S6)=0.1778 or 17.78% and 

P(S7)=0.2715 or 27.15%. This results in the total chance of the Saints making it to the playoffs as 

P(SP)=0.4887 or 48.87%. Although I did not calculate this directly in the name of saving time, the 

probability of the Saints not making the playoffs is calculated as P(SL)=1−P(SP) , with the result of

P(SL)=0.5113 , or 51.13%. Given that only 7 of the 16 teams in each conference make it to the 

playoffs, this puts the Saints slightly above the predicted average for each team of 7
16

or 43.75%. Using 

these outcomes, three tables can be created to show the seeds in each case:

Figure 3.11: The three tables of seeds for the playoffs, along with the relative probability that each happens.

Data analysis: playoffs

In the first round of the NFL playoffs, the “Wild Card playoffs”, the #2 seed of each conference plays the 

#7 seed of the same conference, #3 plays #6, and #4 plays #5. The #1 seed skips this first round, and plays 

the lowest remaining seed in the second round, the “Divisional playoffs”. The remaining two teams then 

face each other as the second game in this round. The third round, the NFC/AFC Championship, sees the 

final two remaining teams from each conference play each other, and the winner of each of these games 

goes on to play in the final game, the Super Bowl. Using these steps, I formed a bracket for the first round 

of playoffs, which I will refer back to after modelling each round.
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Figure 4.1: A tournament bracket for the first round of the playoffs. 

The next thing to do was to construct a set of tree diagrams of all playoff game results up to the conference 

championship, to see the chances of each team making it to the Super Bowl. There are three tree diagrams 

for the NFC, one for each of the Saints’ seed positions, and one for the AFC, as the seed positions are the 

same in each case in the AFC. Any game result where the Saints lose is shown in red, and any result where 

the Chiefs, Dolphins or Bills win their championship are also shown in red, as the Saints have not won 

against them since 2018, and as a result my model would make it impossible for these teams to lose the 

Super Bowl against the Saints. Shown in yellow is each game result which would also be impossible using 

my model as they have won no games against the given opponent since 2018.
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Figure 4.3: Four tree diagrams encompassing all possibilities of the Super Bowl playoffs according to the previous 

models.

 From these diagrams, I formed a table of probabilities of each team getting to the Super Bowl which 

would make it possible for the Saints to win the Super Bowl: any championship result shown in green. For 

this, I used the same approach as calculating the Saints’ chance of making it to the Super Bowl: assuming 

each game won is independent, and multiplying along each “branch” of the diagram to find the 

probability of each possible championship winner. Again, in the sake of saving time, I only calculated the 

paths which make it possible for the Saints to win. Using this approach gave the following results: 

Figure 4.4: A table of each probability of getting to the Super Bowl for the Saints, Chargers and Ravens.
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Here, P(NOSn) denotes the probability of the Saints winning the NFC championship, having started as 

seed n. As the seeding doesn’t affect the Super Bowl matchups, I multiplied each probability of the Saints 

getting to the Super Bowl by the chance of them getting to the playoffs, adding those three together to get 

the overall probability of the Saints getting to the Super Bowl,

P(NOS)=P(NOS5∩S5)+P(NOS6∩S6)+P(NOS7∩S7) , as 8.45%. 

To calculate the chance of the Saints winning the Super Bowl against each of the two possible opponents, 

the Chargers and the Ravens, I expanded my dataset of individual games to include every game played 

between the Saints and each of these teams from 1996 to 2024xvii. I didn’t do this for the initial data 

collection as it would have taken far too long, but it was easy to do here because I was only looking at three 

teams. I took 1996 as the cutoff date because that was the first year which the Ravens played in the NFL, 

making 1996-2025 the longest period of time which both teams played. This gave the overall percentage 

of wins against the Chargers P(NOS≻LAC )=62.5% , and the percentage of wins against the Ravens 

P(NOS≻BR)=25% . Using these, the final probability of the Saints winning the Super Bowl can be 

found as P(SBW )=P(NOS)⋅(P(NOS≻LAC )+P(NOS≻BR)) , presented numerically as 

P(SBW )=0.0845⋅(0.625+0.25)=0.739 or 7.39%.

Conclusion

When assessing the reliability and/or accuracy of my model, the biggest barrier was time. Because I was 

looking at 32 teams in a variety of ways, every calculation that I performed took a number of hours, as 

even simple calculations would have to be performed 32 times. The issue of time also presented itself 

when finding the probability of the Saints making the playoffs: in an ideal world, I would have been able 

to find all possibilities of the Saints getting to the playoffs, from winning 10 games to 16 games. However, 

the sheer number of possibilities – 1024 even when the first 6 wins are taken as a given – prevented me 
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from being able to fully calculate this. There were also many variables which I did not investigate in my 

model, most notably team rosters. These variables would have been very hard to model, due to their 

qualitative nature providing a restriction on both past modelling and future predictions. For these 

reasons, I know that this exploration has limited accuracy, as the data and methods were limited in their 

scope. 

However, the methods which I did use appear to be quite well-suited to the exploration. The regression 

curves which I used were, for the most part, suitable for the data. While the correlation coefficients 

showed largely low fits, I believe that this is mostly due to the high variability of the number of wins. In 

retrospect, I would likely have gotten higher correlations when taking the average of every two points (1 

and 2, 3 and 4, and so on), as this would have removed a good portion of the fluctuation. There were also 

indicators along the way which suggested that my model worked well. With both the probability of the 

Saints making it to the playoffs and the overall probability of them winning the Super Bowl, the Saints 

were slightly above the baseline probabilities of 1/16 and 1/32, respectively. This seems to suggest that my 

model is mostly accurate, as none of these values are significantly higher or lower than the baseline.

The primary application for this kind of exploration is, perhaps predictably, in gambling. Personally, I 

would not and will not apply this math to that field, however it cannot be denied that sports betting is a 

thriving industry, especially with the NFL: in the 2024 season alone, around $35 billion were spent on 

various betsxviii. Interestingly, my calculated estimate of an 8.45% chance of the Saints winning the Super 

Bowl is much higher than the current betting odds of 0.6%xix, placing them as the fourth-least likely to win 

the Super Bowl. This difference is likely due to the factors which I did not look at, as well as a more 

extensive data set built up over years, not months.
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Overall, I think that this model has worked quite well, as there were no significant flaws which presented 

themselves at any point which would have proven the investigation wholly incorrect. The result is also 

somewhat good to know as a Saints supporter, as it suggests that they have a relatively good chance at 

winning the Super Bowl.
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Appendix A: Team matchup probabilities

P(NOS CP)≻ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6875 0.5714 0.2857 1.0000 0.7500 0.3333 0.6667

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.7500 0.0000 0.0000 0.4000 1.0000 1.0000 0.5000

0.0000 0.0000 P(DL PE)≻ P(SF PE)≻ P(MV PE)≻ P(TBB PE)≻ P(PE TBB)≻

0.4000 1.0000 0.3333 0.6667 0.5000 0.7500 0.2500

0.0000 0.0000 P(DL TBB)≻ P(SF TBB)≻ P(MV TBB)≻ P(TBB MV)≻ P(PE MV)≻

0.5714 0.5000 0.2500 0.8000 1.0000 0.0000 0.5000

0.0000 0.0000 P(DL MV)≻ P(SF MV)≻ P(MV SF)≻ P(TBB SF)≻ P(PE SF)≻

0.5000 0.6000 0.5000 0.2500 0.7500 0.2000 0.3333

0.0000 0.0000 P(DL SF)≻ P(SF DL)≻ P(MV DL)≻ P(TBB DL)≻ P(PE DL)≻

0.3333 0.4286 0.3333 0.6667 0.5000 0.7500 0.6667

0.0000 0.0000 P(DL SS)≻ P(SF SS)≻ P(MV SS)≻ P(TBB SS)≻ P(PE SS)≻

0.5000 0.8000 0.2000 0.5714 0.4000 0.5000 0.0000

0.0000 0.0000 P(DL NOS)≻ P(SF NOS)≻ P(MV NOS)≻ P(TBB NOS)≻ P(PE NOS)≻

1.0000 0.0000 0.5000 0.6667 0.5000 0.4286 0.6000

P(MD KCC)≻ P(PS KCC)≻ P(LAC KCC)≻ P(IC KCC)≻ P(BR KCC)≻ P(BB KCC)≻ P(KCC BB)≻

0.0000 0.0000 0.2143 1.0000 0.2000 0.8000 0.2000

P(MD BB)≻ P(PS BB)≻ P(LAC BB)≻ P(IC BB)≻ P(BR BB)≻ P(BB BR)≻ P(KCC BR)≻

0.1429 0.2500 0.3333 0.6667 0.7500 0.2500 0.8000

P(MD BR)≻ P(PS BR)≻ P(LAC BR)≻ P(IC BR)≻ P(BR IC)≻ P(BB IC)≻ P(KCC IC)≻

0.5000 0.3571 0.0000 0.3333 0.6667 0.3333 0.0000

P(MD IC)≻ P(PS IC)≻ P(LAC IC)≻ P(IC LAC)≻ P(BR LAC)≻ P(BB LAC)≻ P(KCC LAC)≻

0.2500 0.4000 1.0000 0.0000 1.0000 0.6667 0.7857

P(MD LAC)≻ P(PS LAC)≻ P(LAC PS)≻ P(IC PS)≻ P(BR PS)≻ P(BB PS)≻ P(KCC PS)≻

0.5000 0.5000 0.5000 0.6000 0.6429 0.7500 1.0000

P(MD PS)≻ P(PS MD)≻ P(LAC MD)≻ P(IC MD)≻ P(BR MD)≻ P(BB MD)≻ P(KCC MD)≻

0.5000 0.5000 0.5000 0.7500 0.5000 0.8511 1.0000
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Appendix B: Regression curve equations

Team Cubic Quadratic
Cardinals -0.005084x3+0.5868x2+1.827x+27.76 -0.1320x2+3.696+24.25
Falcons 0.008821x3-0.4757x2+6.896x+27.19 -0.1449x2+3.652+33.28
Bills -0.004853x3+0.3511x2-4.900x+55.92 0.1691x2-3.116x+52.57
Ravens 0.003517x3-0.09186x2+0.6377x+51.75 -0.07003x2+1.720x+55.59
Bears 0.007140x3-0.3699x2+4.611x+37.81 -0.1021+1.986+42.73
Bengals 0.01451x3-0.6364x2+8.284x+18.55 -0.09208x2+2.946+28.57
Browns 0.01237x3-0.4190x2+3.801x+24.77 0.04473x2-0.7463x+33.31
Panthers -0.005999x3+0.06982x2+1.162x+40.18 -0.1552x2+3.368x+36.04
Broncos 0.006672x3-0.3241x2+3.709x+48.58 -0.07388x2+1.256x+53.18
Cowboys 0.004877x3-0.2455x2+4.027x+35.51 -0.06267x2+2.234x+38.87
Lions -0.002013x3+0.1891x2-2.553+39.25 0.1137x2-1.813x+37.86
Packers -0.002294x3+0.06406x2-0.1570x+59.35 -0.02197x2+0.6866x+57.77
Texans 0.01714x3-0.8570x2+13.04x-11.99 -0.1370x2+4.313x+16.09
Colts 0.01192x3-0.4965x2+4.434 -0.04960x2+0.05217+69.80
Jaguars 0.005594x3-0.12012-1.294x+58.77 0.08963x2-3.351x+62.63
Chiefs -0.01063x3+0.5431x2-6.016x+60.15 0.1440x2-2.108x+52.82
Chargers 0.02263x3+0.9559x2+11.16x+22.18 -0.1073x2+2.838x+37.80
Rams -0.02463x3+1.179x2-15.53x+92.11 0.2559x2-6.478x+75.11
Raiders -0.02281x3+0.9745x2-11.64x+71.30 0.119x2-3.249x+55.56
Dolphins -0.007036x3+0.3853x2-5.775+67.65 0.1214x2-3.188x+62.79
Vikings -0.001570x3+0.1349x2-2.040x+86.46 0.07603x2-1.463x+55.38
Patriots -0.004093x3-0.1455x2+5.261+48.26 -0.01993x2-0.5636x+54.46
Saints -0.009327x2+0.2143x2+0.4475x+41.14 -0.1354x2+3.877x+34.70
Giants 0.005479x3-0.2910x2+3.045x+47.61 -0.08557x3+1.030x2+51.39
Jets 0.004582x3-0.1917x2+1.121x+51.30 -0.01993x2-0.5636x+54.46
Eagles 0.0186x3-0.6197x2+4.879x+53.54 0.08051x2-1.987x+66.42
Steelers 0.005562x3-0.2786+3.765x+51.75 -0.07003x2+1.720x+55.59
49ers 0.001283x3-0.07139x2+1.115x+39.62 -0.1021x2+1.986x+42.73
Seahawks -0.007715x3+0.2544x2-1.597x+53.95 -0.03488x2+1.240x+48.63
Buccaneers -0.0006969x3+0.2136x2-5.233x+70.12 0.1875x2-4.976x+69.64
Titans -0.01832x3+0.7637x2-9.545x+82.01 0.07682x2-2.811x+69.37
Commanders 0.001116x3+0.04210x2-1.938x+53.57 0.008596x2-2.348x+54.35
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